Hazard Research Centre

Estimating the damage potential of extra-tropical cyclones using the WRF model: is there an ideal resolution?

Richard Dixon

The information contained in this document is strictly proprietary and confidential © Aon Benfield UCL Hazard Research Centre

Catastrophe Modelling and NWP

- Insurance companies are regular users of "catastrophe models"
- Effectively attempting to simulate 10,000 years+ of extra-tropical cyclones (windstorms)
- Simple "parametric models" have given way to more sophisticated Numerical Weather Prediction (NWP)-based models
- Keen to understand if existing models are at a "fair" resolution for damage estimation

Motivation 1: NWP Resolution for Resolving Hurricanes

Motivation 2: Sensitivity of Damage to Windspeed

 How does the sensitivity to NWP resolution affect damage for extra-tropical cyclones?

Experimental Design

- WRF EMS on 4x2.83 GHz, 8Gb RAM Linux box
- ARW configuration
- Multiple runs with varying resolution
 - 50, 40, 30, 20, 15, 12km
 - 45, 90 vertical levels

- Simulation domain of 4800 x 2400 km
- Use of the modelled "peak gust" calculation
- Straight "out of the box" simulation

Windstorm Klaus: 50km, 45 levels

Windstorm Klaus: 40km, 45 levels

Windstorm Klaus: 30km, 45 levels

Windstorm Klaus: 20km, 45 levels

Windstorm Klaus: 15km, 45 levels

Windstorm Klaus: 12km, 90 levels

Wind vs. Damage

 Wind damage can be simply estimated where V = gridpoint peak gust as:

$$D = (V-26)^3$$

- Convert peak wind footprint into a "damage" footprint
- Storm damage index

$$DI = \sum D_{domain} * resolution^2$$

Windstorm Klaus: 50km: Damage

Windstorm Klaus: 40km: Damage

Windstorm Klaus: 30km: Damage

Windstorm Klaus: 20km: Damage

Windstorm Klaus: 15km: Damage

Windstorm Klaus: 12km: Damage

"Damage Index"

- DI = $\sum D_{domain}$ * resolution²
- Gradual increase as model resolution increases

- Where is the asymptote?
- 10km? 5km? 2km?
 - Beyond my Linux box !!

Other Examples: 1: Anatol (1999): Gusts

• Wind maximum "sharpens up" with increased resolution

Other Examples: 2: Daria (1990): Gusts

(Burns Day Storm)

Damage Potential for 3 Storms

- Clearly increase in model resolution increases "damageability"
- Divergence in damageability above 40km
- Anatol, Klaus simulations "benefit" from greater resolution more than Daria
- Why?
- Storm that is most damaging at 100km needn't be the most damaging at 15km...

How Resolvable are Storm Features?

Resolution-dependency of flows – CCB, W1, (sting jet)

Future Work

Shapiro-Keyser "Frontal Fracture" type-storms Anatol Klaus
Narrow, intense, high wind-speeds?
Difficult to resolve at low resolution?

Norwegian School "Occlusion" type-storms Daria
Broad, "flatter" wind footprints?
Easier to resolve at low resolution?

- What's the ideal resolution for simulating windstorms? 5km? 20km?
- Is the "resolvability" a function of the key damaging flows
 - CCB jet, "W1" WCB flow, Sting-jet ?
- For climate-modelling studies, how good is 100km/200km resolution predictor of a storm's "true" intensity at 10-20km resolution?
- Hints and tips to improve the model set-up?
 - Surface gust? 1km winds?

